To explore the role of calcyon in neurotransmission, we investiga

To explore the role of calcyon in neurotransmission, we investigated its distribution in the neuropil of the primate prefrontal cortex (PFC), striatum (STR) and mediodorsal thalamic nucleus (MID), three brain regions implicated in these neuropsychiatric disorders. Calcyonimmunoreactivity revealed by immunoperoxidase technique, was localized

in both pre- and postsynaptic structures including axons, spines and dendrites, as well as myelinated fibers and astroglial processes in all the three brain regions. The morphological diversity of immunopositive boutons suggest that in addition to glutamatergic, calcyon could regulate GABAergic as well as monoaminergic neurotransmission. Consistent with the role of calcyon in endocytosis, calcyon-immunoreactivity selleckchem SGC-CBP30 datasheet was rarely found at the synaptic membrane specializations proper, although it was present in distal compartments of neuronal processes establishing synapses. Given the widespread upregulation of calcyon in schizophrenic brain, these findings underscore a potential association with deficits

in a range of neurotransmitter systems in the cortico-basal ganglia-thalamic loop. (C) 2008 Elsevier Ireland Ltd. All rights reserved.”
“Increased sensitivity contralateral to an injury has been described in humans and in various models of neuropathic pain in rats. The mechanism underlying contralateral hypersensitivity is as yet unclear, although previous studies LY294002 have implicated involvement of both spinal neurons and glia. We describe the development of a temporally delayed, robust and long-lasting contralateral allodynia in mice after hindpaw injection with 4% carrageenan. Both ipsilateral and contralateral allodynia could be inhibited temporarily by intrathecally administered morphine, clonidine,

or neostigmine. The delayed development of contralateral allodynia correlated with an increase in OX-42, but not GFAP immunoreactivity in the contralateral dorsal horn. Furthermore, intrathecal treatment with minocycline inhibited the development of contralateral allodynia, suggesting that microglial activation plays a key role in contralateralization, and may be a potential target for clinical intervention after injury or inflammation has occurred, to eliminate the subsequent development of extraterritorial pain. (C) 2008 Elsevier Ireland Ltd. All rights reserved.”
“The renin-angiotensin system (RAS) modulates end-organ damages, resulting in cardiovascular and kidney diseases. Experiments both in vitro and in vivo demonstrate that the angiotensin II (Ang II) type 1 (AT1) receptor pathway also exerts pro-inflammatory and pro-atherogenic effects on bone marrow-derived cells (BMDCs). Here, we investigated how AT1 receptor expression by BMDCs contributes to atherosclerosis and kidney injury in vivo by transplanting BM into RAS-activated transgenic mice.

Comments are closed.