This leads, for example, to the use of TBBPA as part DNA Methyltransferas inhibitor of the abbreviated name of each of its derivatives, but the attached functional group is abbreviated following the guidelines presented herein. We suggest, however, that the common abbreviation HBCD be changed to HBCDD, to
avoid future intermix with hexabromocyclodecane (c.f. Table 2). However, since HBCD is so commonly used for hexabromocyclododecane, we do foresee that this abbreviation may be used also in the future. Therefore, we introduce HBCYD as the PRAB for hexabromocyclodecane. In addition to the specific recommendations given above, we also propose “PentaBDE”, “OctaBDE” and “DecaBDE” when referring to the corresponding commercial products. Chemicals belonging to the BFRs and CFRs are listed in Table 2 and Table 3 respectively, presenting the proposed selleck chemicals llc PRABs and STABs, other abbreviations that have been used previously, chemical abstract name, CAS number, and common names/commercial names. The type of FR is indicated as “R” for “Reactive BFR/CFR” and “A” for “Additive BFR/CFR”. In an additional few columns are some properties of the individual compounds given, as extracted from CA (Scifinder, 2012) under the CAS number given in the table. The BFRs presented in Table 2 are structured as follows, with increasing
molar masses for each subgroup: 1. Aromatic BFRs One aromatic ring compounds Benzenes, including alkyl substituted benzenes The BFRs are characterized by moderate to very high log Kow, with very few exceptions. Four of the BFRs listed are phenolic chemicals, two are one-phenyl ring compounds and two are bisphenols, which leads to a pH-dependent water solubility for each of these chemicals.
CFRs are listed in Table 3. The table is organized in a similar manner as Table 2, starting with aromatic CFRs and ending with aliphatic CFRs. The CFRs are also characterized by intermediate to high log Kow constants. PFRs are listed in Table 4. The PFRs are presented in two groups, those containing an aromatic part (substituent) and those with only aliphatic ester groups, potentially bearing halogen substituents. Some of the PFRs also contain chlorine substituents, which enhance their log Kow, and possibly their bioaccumulation potential (van der Veen and de Boer, 2012). Finally, it is our hope that the proposed nearly PRABs for BFRs, CFRs and PFRs, in this document, will result in a general acceptance and use among scientists and stakeholders in the field. If used as proposed, it will result in less confusion when BFRs, CFRs or PFRs are being reported, even though the abbreviations may, in a few cases, be perceived as somewhat complicated. NVDE and AC acknowledge PhD and post-doctoral fellowships from the Flanders Research Foundation (FWO). AR acknowledges faculty funding from Stockholm University and Stockholm University’s Strategic Marine Environmental Research Funds through the Baltic Ecosystem Adaptive Management (BEAM).