SNPs located in
repetitive regions were also not considered. The central base quality score of ≥30 and average surrounding base quality score of ≥20 were set to assess the quality of reads at positions for SNP detection. A minimum coverage of 10 and a minimum variant frequency of two was required, and the variations compared against the reference sequence were counted as SNPs. The NQS algorithm looked at each position in the genome alignment to determine if there was a SNP at that position. Statistical analysis The sequences spanning the SNPs were extracted and the IUB base code guide used to describe heterologous bases (see Additional file 1: Table S8). At BIX 1294 datasheet each locus the sum of the squared allele frequencies was subtracted from 1 to gauge the diversity (heterozygosity) in both the original Selleckchem GDC 0449 sequenced genomes and the new MLST data (Figure 2). The E. dispar Mercator whole genome alignment deposited in AmoebaDB was used to obtain the equivalent sequences where CX5461 they existed
in this related species (Additional file 1: Table S8) [57, 61]. The statistical significance of SNP distribution or genotype group versus the phenotypic manifestation of disease (asymptomatic/diarrhea or dysentery/amebic liver abscess) was determined by use of a Chi-squared contingency test or Fisher’s Exact test using the Prism 5 program (GraphPad Software) and the resulting p values were corrected for multiple comparisons by use of the false discovery rate formula of Benjamini and Hochberg in the R program FDR online calculator made freely available by the SDM project [62, 63]. To obtain the correction
for multiple comparisons in the pairwise comparison the p-values of all possible combinations (i.e. asymptomatic vrs dysentery; asymptomatic vrs amebic liver abscess; dysentery vrs amebic liver abscess) for a given data set were combined prior to correction. A FDR of 10% was considered significant (http://sdmproject.com/utilities/?show=FDR_). Acknowledgments This investigation was supported by grant 5R01AI043596 Protein kinase N1 from NIAID to WAP. This project has also been funded in part with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services under contract numbers N01-AI30071 and/or HHSN272200900007C.We wish to thank Dr Karen Beeson for her expert advice regarding next-generation sequencing technology, Drs. Cynthia Snider and Poonum Korpe for transportation of Bangladesh DNA samples and Dr. A. Mackey, Dr. B. Mann and Dr. M. Taniuchi for informative discussions. We also wish to thank Dr. B. Mann and C. B. Bousquet for careful reading of this manuscript. Electronic supplementary material Additional file 1: Supplemental Tables. This file includes all supplemental tables mentioned in the text in an excel spreadsheet. (XLSX 2 MB) Additional file 2: Figure S1.