On the left side of the integration side an inverted repeat (IR) is indicated. Upstream of the IR a gene encoding a tRNACys is located. In B. bronchiseptica GI3::tetR is once more integrated in a gene encoding a tRNAGly (tRNA45) leading to a 18 bp duplication of its 3′-end. Much alike in B. petrii the direct repeat
sequence is followed by an inverted repeat (IR). Below the schematic presentations of the integration regions the respective DNA sequences of the integration sites are shown. The selleck kinase inhibitor start points of the tRNA genes are indicated by horizontal arrows indicating transcriptional polarity of the genes followed by a bar marked with a star which indicates the end of the tRNA gene. Vertical arrows indicate the integration sites of the GIs in the tRNA genes. Related inverted repeat sequences (IR) present in both species are boxed. In the case of B. bronchiseptica the sequence position indicated is taken from the genome sequence PF477736 mw of strain RB50 [13]. Conclusion The data presented here underline the previous notion of a highly mosaic genome of B. petrii. By microarray analysis of spontaneous phenotypic variants of B. petrii and by direct detection of excised circular intermediates of the B. petrii GIs we show that all of them are active at least in terms of excision. We provide evidence that the adjacent integration of highly related elements may enable these elements to pick up additional
genomic material placed between the integration sites thereby leading to
an increase in the size of the islands. Moreover, the adjacent placement of islands encoding highly similar integrases and attachment sites may also lead to the formation of novel huge composite islands. For ICE-GI3 we show that without selective pressure this island is lost from the bacterial population. Moreover, 3-mercaptopyruvate sulfurtransferase we show that this island is self transmissible and can be transferred to another Bordetella species, B. bronchiseptica. Therefore, the evolution of B. petrii involved massive horiztonal gene transfer, while in the classical pathogenic Bordetella species only very few examples of HGT have been reported, e.g. the horizontal transfer of insertion elements, the acquisition of an genomic region encoding an iron uptake system in B. holmesii and, possibly, the inactivation of the genes encoding adenylate cyclase toxin in a specific B. bronchiseptica lineage by a horizontally acquired gene cluster encoding peptide transport genes [12, 23, 24]. This may indicate that their unique habitat due to an obligate host association has dramatically limited the impact on horizontal gene transfer for the pathogenic Bordetellae once they had acquired their capacity to infect and to persist exclusively in vertebrate hosts. Methods Bacterial strains and growth conditions In this study B. petrii DSM12804, the type strain of the species [5], B. bronchiseptica BB7866 [25], and B.