The length of the PCR products were 331 bp (MDR1), 414 bp (GCS) and 205 bp (β-actin) respectively. As shown in Figure 1A, the relative mRNA levels of GCS in HCT-8, HCT-8/VCR, HCT-8/VCR-sh-mock and HCT-8/SRT1720 ic50 VCR-sh-GCS were 71.4 ± 1.1%, 95.1 ± 1.2%, 98.2 ± 1.5%, and 66.6 ± 2.1% respectively. The mRNA levels of MDR1 were
respectively 61.3 ± 1.1%, 90.5 ± 1.4%, 97.6.8 ± 2.2% and 56.1 ± 1.2%. Figure 1 Knocking down GCS inhibits mRNA expression of MDR1 and protein level of P-pg. A, the mRNA level are higher in HCT-8/VCR cells compared with HCT-8 cells. The GCS mRNA level decreased when transfected with shGCS plasmids. The MDR1 gene expressin increased in HCT-8/VCR cells compared with HCT-8 cells. The MDR1 mRNA level also decreased when knocking down GCS. B, the protein level of P-pg decreased when knocking down GCS. Protein level of β-actin was set as 100%. *Ρ < 0.01 compared with the HCT-8/VCR and HCT-8/VCR-sh-mock cells. P-gp protein level decreased Crenigacestat when knocking down GCS in HCT-8/VCR cells The protein levels of GCS
and P-gp AZD1480 molecular weight in stable cell lines were detected by Western-blotting. As indicated in Figure 1B, the protein level of GCS increased in HCT-8/VCR, HCT-8/VCR-sh-mock cells compared to HCT-8 cells. The protein levels of GCS in HCT-8/VCR-sh-GCS decreased when transfected with Sh-GCS(Ρ < 0.01). It also true for protein level of P-pg. Knocking down GCS suppressed HCT-8/VCR proliferation The proliferation of HCT-8, HCT-8/VCR, HCT-8/VCR-sh-mock and HCT-8/VCR-sh-GCS cells was detected by Cell Counting Kit-8 (CCK-8). We measured the growth of the cells every 24 h, for 4
days. Knowing down GCS impaired HCT-8/VCR-sh-GCS cell proliferation (Ρ < 0.05) (Figure 2). Figure 2 Knocking down GCS suppresses HCT-8/VCR cell proliferation. HCT-8 cell (2 × 103) were seeded in 96-well in 100 ul PRMI-1640 medium. Cell proliferation was determined at 24-h intervals up to 96 h in sh-mock or sh-GCS stably transfected cells. Data are shown as means ± S.D. Knocking down GCS in HCT-8/VCR cells reverse its sensitive to cisplatin treatment Cisplatin is one of the effective chemotherapeutic agents in clinical cancer treatment. It was found here that the IC50 of Cis-platinum complexes were respectively Carnitine dehydrogenase 69.070 ± 0.253 μg/ml, 312.050 ± 1.46 μg/ml, 328.741 ± 5.648 μg/ml, 150.792 ± 0.967 μg/ml in HCT-8, HCT-8/VCR, HCT-8/VCR-sh-mock and HCT-8/VCR-sh-GCS. The drug resistance folds were respectively 4.6 (HCT-8/VCR), 4.7(HCT-8/VCR-sh-mock), 2.2(HCT-8/VCR-sh-GCS), the sensitive cells HCT-8 was set as 1(Figure 3). Figure 3 Knocking down GCS causes HCT-8/VCR more sensitive to cisplatin induced cell death.