5% at day 7, n = 6) during dosing (Figure 3). Since this effect was not evident in the independently conducted toxicity studies in the same species of mice (0% change at day 7, n=8), the body weight loss is suggested to be nonspecific to the compound. The body weight loss may be related to the tumor burden or different tumor xenograft interactions, since the change varied between models
(11.5% for Huh-7 and 13.5% for Colo205 at day 7). The influencing factors of body weight loss in the xenograft models remains unclear, and further parallel designs of xenograft and toxicity studies may help determine the underlying cause. The translational implications were further explored with studies in multi-drug resistant (MDR) cell lines, synergistic studies, and BMS202 nmr clinical databases. The activity in MDR cell lines was shown with other Hec1 analogues (Huang et al., manuscript submitted) and is not specific Poziotinib in vitro to the Hec1 analogue TAI-1. The activity in MDR cell lines carry important clinical implications and suggests that Hec1-targeted agents may be able to offered as a treatment option to cancer patients who do not respond to currently available anticancer agents, a major clinical advance. A combinatorial approach incorporating anti-cancer drugs targeting different pathway for treatment regimens is often used to improve medical outcomes. The synergistic effects of TAI-1 with commercial anticancer AZD3965 purchase agents
suggest that TAI-1 or its analogues may be very easily incorporated to current multi-drug treatment regimens. A small pilot study using clinical database analysis shows that Hec1 expression
may correlate with established patient subtypes, which may further aid in MRIP the building of the parameters for response in clinical applications. Further studies in the clinical development of Hec-1 inhibitors will determine whether selection based on these subtypes will aid in the identification of patients who are more likely to respond to Hec1-targeted therapy. Conclusion In conclusion, this study demonstrates the potential of the improved anticancer agent targeting Hec1 for clinical utility. The potency, safety, and translational implications show that a Hec1-targeted small molecule agent can be developed for clinical utility and that a variety of potential clinical applications may be available to support clinical development. Acknowledgements We thank Dr. Chia-Lin Wang, Pao-Nien Chen, and team members at the Development Center for Biotechnology, Xizhi, Taiwan for their dedicated efforts. The support of Drs. Chi-feng Chang and Jui-Lien Huang, Dr. Horace Loh, Ms. Lihyan Lee, and Mr. Kuo-Ming Yu are deeply appreciated. We also thank Dr. Phang-Lang Chen, Dr. Yumay Chen, and Dr. Wen-Hwa Lee for their encouragements to initiate this project. Electronic supplementary material Additional file 1: Supplementary materials and methods.